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SUMMARY:

Partial correlation is a common tool in studying conditional dependence for Gaussian distributed data. However,
partial correlation being zero may not be equivalent to conditional independence under non-Gaussian distributions. In
this paper, we propose a statistical inference procedure for partial correlations under the high-dimensional nonpara-
normal (NPN) model where the observed data are normally distributed after certain monotone transformations. The
nonparanormal partial correlation is the partial correlation of the normal transformed data under the NPN model,
which is a more general measure of conditional dependence. We estimate the NPN partial correlations by regularized
nodewise regression based on the empirical ranks of the original data. A multiple testing procedure is proposed
to identify the nonzero NPN partial correlations. The proposed method can be carried out by a simple coordinate
descent algorithm for lasso optimization. It is easy-to-implement and computationally more efficient compared to the
existing methods for estimating NPN graphical models. Theoretical results are developed to show the asymptotic
normality of the proposed estimator and to justify the proposed multiple testing procedure. Numerical simulations and
a case study on brain imaging data demonstrate the utility of the proposed procedure and evaluate its performance
compared to the existing methods. Data used in preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database.
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1. Introduction

Measures of dependence are commonly used to understand the interactions among variables
and the data generation mechanism of a complex system. Studying variable dependence is an
essential problem in many biological studies, especially in the experiments that collect data
from a large number of variables, for example, studying gene expression network (Wang and
Huang, 2014) and brain connectivity (Huang et al., 2010; Qiu and Zhou, 2020, 2021). It is
widely believed that different brain regions work together in performing our daily activities
(Bullmore and Sporns, 2009). However, neurodegenerative diseases, such as Alzheimer’s
disease, may alter the interactions among brain regions (Supekar et al., 2008; Qiu and Zhou,
2020). Therefore, understanding the brain functional connectivity can help the diagnosis and
treatment of such diseases.

Partial correlation measures conditional dependence after controlling the effects of other
variables. Compared to marginal correlation, it provides a direct association between two
variables after adjusting the confounding effects of other variables. When the number of
variables is greater than the sample size, estimates for partial correlation cannot be directly
computed as the sample covariance matrix is not invertible. Over the past decade, estimating
a high-dimensional precision matrix has gained increasing attention. Under a suitable sparsity
condition on the population precision matrix, it can be consistently estimated by the neigh-
borhood selection method (Meinshausen and Bithlmann, 2006), graphical lasso (Friedman
et al., 2008), and CLIME (Cai et al., 2011, 2016) by penalized estimation or constraint ¢;
norm optimization. See other penalized estimators in Ming and Yi (2007); Banerjee et al.
(2008); Peng et al. (2009). Statistical inference procedures for high-dimensional precision or
partial correlation matrices were constructed in Liu (2013); Ren et al. (2015); Wang et al.
(2016); Chang et al. (2018); Qiu and Zhou (2020) using residuals from either pairwise or

nodewise regressions.

This article is protected by copyright. All rights reserved.



2 Biometrics, 000 0000

Despite the popularity, the equivalence between zero partial correlation and conditional
independence relies on the Gaussian assumption. To construct more general dependence
measures under non-Gaussian distributions, Liu et al. (2009) introduced the nonparanormal
(NPN) model where the data are normally distributed after certain unknown monotone
transformations. Under the NPN model, the NPN partial correlations of the normal trans-
formed data can be used to infer conditional independence. Liu et al. (2012); Xue and Zou
(2012) proposed regularized estimates for precision matrices under the NPN graphical model.
However, statistical inference procedures were not considered.

Gu et al. (2015); Xu et al. (2016); He et al. (2017); Barber and Kolar (2018) constructed
novel statistical inference procedures for each entry of the precision matrix under either
the NPN model or a more general transelliptical model with theoretical guarantees. In
particular, He et al. (2017) proposed a multiple testing procedure for recovering nonzero NPN
precision coefficients. All the aforementioned approaches estimate the precision coefficients
by a regularized inverse of the covariance estimate, obtained by the sine transformation
of the sample Kendall’s 7 from the original data. However, such a covariance estimate
may not be positive semi-definite, which may incur non-convexity issues in estimating the
precision coefficients and bring heavy computation. Moreover, those inference procedures
require estimating the variance of a debiased estimator of the regularized inverse, which is
computationally intensive for data sets with many variables. A more detailed discussion on
the computation of those methods is presented in Section 3.3.

In this paper, we propose a computationally efficient and easy-to-implement approach via
regularized rank-based nodewise regression (RRNR) to estimate and test the partial corre-
lations under the NPN model. The proposed approach applies nodewise regression on the
normal quantile transformation of the empirical ranks of the original data. A multiple testing

procedure is constructed to recover the nonzero partial correlations. The proposed procedure
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can be implemented by a simple coordinate descent algorithm for lasso optimization and does
not suffer from non-convexity issues in computation. Theoretical results show that the RRNR
estimator of partial correlation is asymptotically normal under a high-dimensional setting,
and the proposed multiple testing procedure can control the false discovery rate (FDR) at the
nominal level. Simulation studies are conducted to evaluate the performance of the proposed
procedure, which shows that it reaches the highest power among the existing methods while
controls the FDR. Empirical analysis on a brain imaging data set demonstrates the utility
of the proposed procedure in practice.

The rest of the paper is organized as follows. The nonparanormal model and the hypotheses
of interest are introduced in Section 2. The proposed RRNR estimator, the multiple testing
procedure, and the connection between the proposed estimator and the existing methods
are given in Section 3. Section 4 provides theoretical properties for the proposed method.
Simulation studies and a real data analysis are reported in Sections 5 and 6, respectively.
Discussion on the applications and future extensions of the proposed method is presented in

Section 7. All technical proofs are relegated to the Supporting Information.

2. Preliminary and Model

In this section, we introduce the nonparanormal model and the target partial correlations
under this model. The notations to be used throughout the paper are summarized in the
following. For an n x p matrix A = (A;;)nxp, let A(j) denote the jth column of A, and A_; be
the sub-matrix of A without the jth column. Let |A|, = maxi<i<n1<j<p |4ij| be the matrix

element-wise maximum norm. For a vector a = (a1, ...,aq)" € R? let |a|, = (X1<jcd |a;|)Ya

denote the ¢, norm of a, and |a|y = 2?21 I(a; # 0) and |a|, = maxi<j<q|a;| be the £y and
{4 norms of a, where I(+) is the indicator function. Let a_; be the sub-vector without the
jth component.

Let Z = (Zy,...,Z,)" be the observed data matrix, where Z; = (Z;,...,Z;)" for
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1 = 1,...,n, and the dimension p could be much larger than the sample size n. Sup-
pose the observations {Z;}!_; are independent and identically distributed (i.i.d.) random
vectors drawn from a p-dimensional distribution F, with mean @, = (g1, ..., fzp)" and
covariance ¥, = (0,;,;). Let Q, = (w,;,5,) = X, be the precision matrix of Z;. We
assume Z; follows the nonparanormal distribution NPN (X, H), where Xy = (0x,j,)
and H(-) = (hi(-),...,hy(-))" is a p-dimensional transformation with strictly monotone
univariate functions h;(-) for j = 1,...,p. The nonparanormal model assumes that the
transformed data X; = H(Z;) = (h1(Za), ..., hy(Z;,))" follows a p-dimensional multivariate
normal distribution with mean 0 and covariance Xy with diagonal elements oy ;; = 1 for all
j=1,...,p. Let Qx = (wx ;) = By be the precision matrix of X;, and X = (X1,...,X,)"
be the transformed data matrix. Let W, = (p,j,j,) and ¥x = (pxj,) be the partial
correlation matrices of the observed observation Z; and the normal transformed data X,
respectively, where p, i i, = —Wz 1o (W15 Waiinja) 2 A0 Pxiris = —Wxirin (Wxjrjs Wxinja )2
from the relationship between partial correlations and precision coefficients (Peng et al., 2009,
Lemma 1).

Notice that, under the NPN model, oy j,;, = 0 is equivalent to the j;th and jsth variables
being marginally independent which implies o, ;, = 0. But the other direction of this
conclusion may not hold as oy j, 5, being zero does not guarantee the independence between
the two variables. This indicates nonzero oy ; ;, implies oy, # 0, and the support of
3« includes that of ¥,. Similarly, under the NPN model, wy ;j, = 0 is equivalent to the

conditional independence of Z;;, and Z;;, given the rest of variables. However, this does not

J2

necessarily indicate wy j, ;, = 0 since the partial correlation between Z;; and Z;;, only takes

J2
off the linear effects of all other variables. Nonlinear effects of Z_;, j,) may still exist and
make wy j, ;, nonzero even if the j;th and joth variables are conditionally independent. See

Example 4 in Baba et al. (2004) as an illustration of this point by the lognormal distribution.
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This means that conditional independence has no close ties with zero partial correlation
of the original data {Z;} except in the case of multivariate normal distributed Z;, and the
partial correlation Wy of the transformed data is a more accurate measure for the conditional
independence of Z; since py j,j, = 0 is equivalent to the conditional independence between
those two variables under the NPN model. Therefore, the target parameters in this paper
are all the elements py j, ;, in the high-dimensional NPN partial correlation matrix ¥y of the
latent variables X;. Particularly, we are interested in the multiple hypotheses
Hojijs : Pxjije =0 Vs, Hgjijy @ Pxjije # 0 (2.1)
to identify the nonzero NPN partial correlations. Compared to the precision coefficient wy j, j,
under the NPN model, not only can the partial correlation py ; j, show whether two variables
are conditionally dependent or not, but also it provides the strength of the conditional
dependence.
From Lemma 1 in Peng et al. (2009), the partial correlation py j,;, can be obtained from

p nodewise regressions on the transformed data X; as

Xiji = Bino+ Y BirisXigs + € (2.2)
J2#J1
where ¢;;, and X;_j, are uncorrelated for j; = 1,...,p. Let ¢, = (€1,...,€,)" and V =

(vj,4,) = cov(€;) be the covariance matrix of the regression error €;. It can be shown that

e RO (2.3)

prjle = =
VWX, j151 %X, 252 A/ Virj1 Vjago

In the following section, we propose an estimator for py j ;, with an inference procedure

based on the ranks of {Z;;}7 ; and the relationship (2.3).

3. Method

In this section, we introduce the regularized rank-based nodewise regression (RRNR) proce-
dure for estimating the nonparanormal partial correlations and a multiple testing procedure

for the hypotheses (2.1) with FDR control based on the proposed estimator.
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3.1 RRNR procedure

The proposed RRNR procedure first estimates {X;;}7_; by the ranks of {Z;;}I, and then
applies a regularized regression method on (2.2) with the estimated X; to estimate the
nonparanormal partial correlation px j, ,-

Let ®(-) and ®!(-) be the cumulative distribution function (cdf) and the quantile function
of the standard normal distribution, respectively. It can be shown that h;(-) = & 1{F;(-)}
for j = 1,...,p, where Fj(-) is the cdf of Z;;. Note that F;(Z;;) follows the Uniform(0, 1)
distribution as Z;; is a continuous random variable under the NPN model. Let r;; denote
the rank of Z;; among the n observations {Z;;}}_, for i = 1,...,nand j = 1,...,p. It is
natural to estimate h;(-) by plugging in the winsorized empirical cdf ﬁ’n](az) of {Z;;}?_,, where
F,;(z) = min{F, ;(z),1 — 1/n?} is an estimate of F;(-), and F, ;(z) = IS W Zy; < ) is

the empirical cdf of {Z;}}_;. Let

~ ~ Lo O ry/n) iy <m;
Xij = hj(Zij) = @ {F,;(Zi)} = (3.4)
1 —1/n%), ry=n

be the estimated X;; based on the rank of Z;;, where the last equality is due to ﬁ’mj(Zij) =
7;;/n. The use of the winsorization ®'(1—1/n?) is to avoid the transformation being infinity
for the maximum value of {Z;;}!" ,. Similar estimator of X;; was considered in Liu et al.
(2009) with a winsorization of {r;;/n} at the level n="4(logn)~"/2 and 1 — n="*(logn)~'/2
for the lower and upper empirical quantiles, respectively. Mai and Zou (2015) also used the
winsorized estimator in discriminant analysis under the NPN model.

Let X; = ()A(ﬂ, o ,)?ip)T for i = 1,...,n, and X = (5{1’ . ,)A(n)T. We fit the nodewise
regressions (2.2) with the empirically transformed data {X;} by lasso (Tibshirani, 1996).
Note that 37 | X;; = ®1(1 — 1/n?) for all 1 < j < p. Let d, = ®1(1 — 1/n2)/n, which is

the average of the empirically transformed data {)?ij}?zl for each variable. Let D,, = d,1,,
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where 1, is a p-dimensional vector of 1. Since d,, is at the order 4/log(n)n™", D, is negligible
in our theoretical analysis.
Let B; = (Bj1,---»Bjj-1,—1,Bjj+1,-- -, Bjp)" be the coefficients of regressing Xi; on the

rest of variables in (2.2) with 3;; = —1. We estimate 3; by lasso as

~ R I ~
B, = argmin [~ V48R - D X Il (35
By Biy=—1LT i3 1<k#j<p
for a penalty parameter \;. Let €, = (€1,...,€y)" be the residuals of the ith observation
from the p nodewise regressions for ¢ = 1,...,n, where €; = —B]T(}A(Z —D,,). Similar to Liu

(2013); Qiu and Zhou (2020), we construct the bias corrected estimator

~ IR QP 2 o2 a0 o2
Ujije = _ﬁ Z(Eiﬁeih + thjzeijz + ﬁjz,ﬁeijl) (36)
=1

for 1 < j1, j2 < p to estimate the covariance matrix V = cov(e;). From the relationship (2.3),

the proposed RRNR estimator for the nonparanormal partial correlation px j,;, is

~ Vi ‘ ‘
Px.juin = —% for ji # jo. (3.7)

(V3231 Vsaso

The first advantage of the proposed estimator is the convexity and the normally distributed
covariates {)A(”} of the lasso program (3.5) for the nodewise regressions, which can be
efficiently solved by existing algorithms like coordinate descent and least angle regression.
Once the nodewise regressions are fitted, the computation of py ;,j, is only based on simple
arithmetic calculations. The computation complexity of estimating all partial correlations
is at the order mp*. Secondly, from Theorem 1 in Section 4, we have that \/npxjj, is
asymptotically normal with mean 0 and variance 1 under some regularity conditions and
the null hypothesis py j,;, = 0. Therefore, a multiple testing procedure for the hypotheses
(2.1) can be constructed only based on {px ;,;,}, which does not require the estimation of

additional parameters. This is introduced in the next subsection.
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3.2 Multiple testing procedure

We construct a multiple testing procedure for py j,;, based on the asymptotic normality of

Px.jrjo- Specifically, let

To(s) = {0 d2) : [Pl > s(1 = 5,5, ){log(p) /n} 2} (3.8)
be the set to recover the nonzero p j, j,, Where px iij, = Px.jidllPx.inj| > 2{log(p)/n}"?] is
the thresholding estimator of py j, j,-

To choose the cut-off value s in 7y(s), we control the FDR of the hypotheses (2.1) at
a pre-specified value a. Note that FDR is the expectation of false discovery proportion
(FDP), which is defined as the number of false positives over the number of discoveries. Let
So = {(j1,72) : pxjij» = 0} be the set of zero nonparanormal partial correlations. For any set

A, let | A| be the cardinality of A. The FDP of 75(s) in (3.8) can be expressed as

[7a(s) N Sl
max{1, [To(s)[}

where the numerator can be approximated by its expectation 3, ) E(I[|x 15| > (1 —
b/x%jm){log(p)/n}m]) which is bounded by 2{1 — ®(s+/logp)}(p? — p) asymptotically. There-
fore, to control the FDR of 75(s) at a € (0,1), we choose

. 201 = @(svlog )} (v* — p)
Sy —mf{se((),Q] : max{ L, To ()|} <o¢}.

If s§ does not exist, set si = 2. The proposed multiple testing procedure rejects the null

FDPy(s) =

(3.9)

hypothesis Hy j,j, in (2.1) if (41, j2) € To(sE). Since {1 — ®(24/logp)}(p? —p) — 0 as p — w0,

there is no need to search the cut-off value s in (3.9) beyond 2.

3.3 Connections to the existing methods

Under the high-dimensional NPN model, the existing methods (Liu et al., 2012; Xue and
Zou, 2012) estimate the precision matrix Qy via the trigonometric relationship oy j,;, =
sin(77,,;,5,/2) between the covariance of the transformed data and the Kendall’s 7 of the

original data, where 7, ; j, denotes the population Kendall’s 7 coefficient between Z;; and
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Zij,. Let 7., be the sample Kendall’s 7 of 7, j,;,, 0x j1j, = sin(n7,,j,/2) be the trigono-
metric estimator of oy j,, and 3y = (Fy,,;,). Particularly, recent works (Gu et al., 2015;
Xu et al., 2016; He et al., 2017; Barber and Kolar, 2018) developed inference procedures for
each of the precision coefficient wy j, ;, based on .

Since f)x may not be positive semi-definite which leads to non-convex optimization, ei-
ther the restricted lasso estimator (Barber and Kolar, 2018) or the Dantzig selector type
estimator (Gu et al., 2015; Xu et al., 2016; He et al., 2017) is used to estimate €2y based
on f]x. The restricted lasso estimation requires an additional tuning parameter that bounds
the ¢; norm of the estimated €2x. However, there is no practical guideline to choose this
constraint parameter and an inappropriate value may lead to unstable results due to the
non-convex optimization. Although the Dantzig selector does not have the non-convexity
issue, it is computationally slower than Lasso type methods, especially for large p cases. As
a comparison, the proposed method only requires the classical convex lasso estimation (3.5)
on the nodewise regressions of the rank-transformed data )A(i, which can be solved efficiently.

Moreover, the debiased estimators of wy ;,j, in Gu et al. (2015); Xu et al. (2016); Barber
and Kolar (2018) are constructed by formulations related to the matrix product ﬁxixﬁx,
where ﬁx is the regularized inverse of ix by the restricted lasso method or the Dantzig
selector. But the variances of such debiased estimators are much more complex than that
of the proposed partial correlation estimator. Testing for each wy j, ;, requires calculating
quadratic products of a p x p matrix that is constructed by using all pairs {Z;,,Z;,} of
the original data. Given a regularized estimate of €2y, the computation complexity of those
methods for the inference of all precision coefficients is at least at the order n?p?*, which
is higher than the computation complexity np? of the proposed method. The computation
times of those methods in the simulation study are reported in Table 1, which verifies this

point.
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Despite of the fast computation of the proposed method, it requires a slightly more
restrictive sparsity condition on the maximum number of nonzero elements in each row of €2y
by a factor of n=2% (log p)~* compared with that in Gu et al. (2015); Xu et al. (2016); Barber
and Kolar (2018), where Jy is an arbitrarily small positive constant. The extra condition is
due to controlling the variation of estimating the distribution function F};(x) by the empirical

cdf ]*Njw (x). More detailed discussion on the theoretical results is provided in the next section.

4. Theory

In this section, we show the consistency of the rank-based lasso estimator Bj in (3.5), and
derive the asymptotic distribution of the proposed RRNR estimator py j,j, in (3.7). Based
on these results, we show the FDR control of the proposed multiple testing procedure (3.9)
for the hypotheses (2.1).

Let A\, < ... < Ay be the eigenvalues of the NPN precision matrix x. Recall that €y ;)
denotes the jth column of Q. Let 5o = maxi<j<p |2y j)lo and s1 = maxi<j<p [2x,(;)[1 be
the maximum number of nonzero elements in each column of €y and its matrix ¢; norm,
respectively. Let C' be a positive constant which may change under different occasions. We

make the following assumptions on the sparsity and eigenvalues of €.
CONDITION 1: Assume sq = 0{n'/>=%(log p)~'} for an arbitrarily small constant dy > 0.

CONDITION 2: There exists a positive constant C, such that C~! <\, < A\ < C.

Condition 1 regulates the sparsity of {2, which is needed for establishing the consistency of
Bj from the nodewise regression (3.5) of X. A slightly weaker condition maxi<j<p |Qz,j)lo =
o{n'?(log p)~*/?} is required for the high-dimensional nodewise regression of the observed
data Z and the statistical inference for its precision matrix €2, and partial correlation matrix
¥, (Liu, 2013; Chang et al., 2018; Qiu and Zhou, 2020). We need a more restrictive sparsity

condition for testing each element of ¥y due to the unobservable X; under the NPN model
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and the estimation of the distribution function Fj(x) for each variable. Condition 2 requires
the eigenvalues of €2y being bounded away from 0 and infinity, which is commonly assumed
in the literature on estimating high-dimensional covariance and precision matrices (Bickel
and Levina, 2008). This condition also implies that maxi<;, <j,<p |Px.jija| < 1 —co for a small
positive constant cg.

Let so; = |B;lo and s1; = [B;|1. Notice that [B;lo = [2x,j)lo, S0; < s0 and s1; < Csy
for j = 1,...,p. We first establish the consistency of the rank-based lasso estimator. The
following proposition gives a uniform bound for the ¢, and ¢, distance between 3, and its
estimator Bj for all j. The statistical property of the partial correlation estimator px j, j, can

be derived based on this result.

PRrOPOSITION 1: Under Conditions 1 and 2, and a penalty parameter \; in (3.5) at the

order s ;(log p)n~12*° for any § € (0,1/3), we have

~ ~ 12
112]62; 1B; — Bl < C)Ajso; and gjaé)\ﬁj — Bjla < O3y

with probability 1 — p~¢ for a positive constant c.

Proposition 1 provides the convergence rates of ,(/;j to 3;. It extends the classical theoretical
results of lasso (Bithlmann and Van De Geer, 2011) with observed covariates and response
to the case with estimated covariates and response by the empirical ranks of the data.
Compared to the classical lasso with ¢, and f, convergence rates at sg;{log(p)/n}*? and
{s0,jlog(p) /n}'/2, the proposed rank-based estimator ﬁj has slower convergence rates due to
the use of a larger penalty level \; to control the additional variation caused by estimating
the distribution functions {F}(z)}. Notice that the bound for \()A((j) - )A(_jﬁj)T)A(_j/moo is
increased by replacing X with X, even though €y X—j/nlo = O,({log(p)/n}"?), where
€;) = (€1j,...,€;)" are the regression errors from the jth nodewise regression in (2.2).

Under the condition of bounded ¢; norm of €2 which is assumed in Gu et al. (2015); Xu

This article is protected by copyright. All rights reserved.
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et al. (2016); He et al. (2017) for testing coefficients of €2, the ¢; and ¢5 convergence rates

~1/2+3 respectively. Those rates are inferior to the

of ,[Aij are g j log(p)n=Y**% and Sé{f log(p)n
classical lasso by a factor (log p)'/?n’, where 4 is an arbitrarily small positive constant. Barber
and Kolar (2018) also considered testing for each component of €y via an approach related
to pairwise regression for precision matrices (Ren et al., 2015). The estimated coefficients
from the pairwise regression enjoy similar convergence rates of the classical lasso. However,
as discussed in Section 3.3, their approach encounters non-convexity issues in the regularized
regression and requires heavier computation.

Recall that Sy = {(j1,J2) : pxjij» = O} is the set of zero nonparanormal partial correlations.
The following theorem establishes the asymptotic expansion of the estimator vj,;, for the

covariance between the nodewise regression errors {¢;;} over Sy, which implies the asymptotic

normality of px j,j,-

THEOREM 1: Under the conditions in Proposition 1, p < n¢ for a positive constant

12200 (1og p)=2} for an arbitrarily small positive constant 0y, we have

2
€, and sps; = ofn
~ . ~ . n ~1/2
max;, 5, ‘pX,jm’Q - vajljZ‘ — 0 asn,p — 0. Pa'rtzcularly, Ujijo = — Zi:l €ijy Eijz/n + Op(n / )

for all (j1,j2) € So, where the small order term o,(n=Y2) is uniform over S;. Moreover,

\/ﬁﬁXﬂ'lh - N(O» 1) asmn,p — 0 fOT’ all (jlij) € SO'

This asymptotic normality result in Theorem 1 is the foundation of the proposed multiple
testing procedure. As discussed after Condition 2, Theorem 1 requires a more strict sparsity
condition on sy than max;<j<, |Qz;)lo = 0{n?(logp)~*?} in estimation and inference of
Wy j1j, (Liu, 2013). If the ¢ norm of €24 is bounded, Theorem 1 prescribes sy being at a smaller

order of n!/2=2%(

log p)~2 for a small positive constant &y, which is milder than the sparsity
conditions (sq = o{n'*(log p)~/?}) made in Theorem 4.5 in He et al. (2017). However, our
sparsity condition is stronger than that (so = o{n'/?(logp)~'}) made in Gu et al. (2015);

Barber and Kolar (2018) for the inference of wy j, j,. The more restrictive condition on sy by
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a factor n=2%(logp)~' is caused by controlling the difference between X; and its estimate
X; from the empirical ranks. In general, as s; < C/sq for a positive constant C, a sufficient
condition for sys? = o{n'/?>=2% (logp) 2} is sy = o{n'/*~%(log p)~'}. This requires the number
of nonzero elements in each row of €y being at a smaller order of n'/*.

Let Sy be the compliment of Sy, which is the set of signals in Wy. Let FDPy(sf) =
|To(s5) N Sol/ max{1,|To(sg)|} be the FDP of the proposed multiple testing procedure for the
hypotheses (2.1), where 7y(s) and s are given in (3.8) and (3.9). To study the type I error

of the proposed multiple testing procedure, we make an additional technical assumption.

CONDITION 3: Let M = {(j1,J2) © |pxjuinl > Ch(log p)n=Y2+3} for a small positive

constant ¢. Assume |M| > Chy/Tog p for positive constants C; and Cs.

Condition 3 is a mild condition on the NPN partial correlation matrix Wy, which requires
at least CN'Q«/log p elements in ¥y with absolute values larger than C~'1 (log p)n~Y?*9 where
9 is a small positive constant. It guarantees the number of significant nonzero py j,;, by the
proposed procedure (3.9) is at least of the order v/log p. The following theorem presents the

FDR control of the significant set 7o(s§) for the hypotheses (2.1).

THEOREM 2: Under the conditions in Theorem 1, Condition 3, sy < Cp(logp)~1=™ for

positive constants C' and 1y, we have that lim,, ,_,o, P(FDPy(s§) < a+¢) =1 for any € > 0.

Theorem 2 shows that the proposed multiple testing procedure can control the FDR at the
nominal level . The condition sy < Cp(log p)~'~™ implies that the number of nonzero par-
tial correlations in each row of Wy is less than the order p/(log p)'*™ for a positive constant
m. It is satisfied if v/n < Cp under Condition 1. Let N = {(j1,J2) : px.juj» = (logp) 177}
be the set of relatively large NPN partial correlations (larger than a multi-logp term that
converges to zero), where 1) is a positive constant. This condition leads to a bound on the size

of N such that |[N| < Cp?/(log p)'™, which is required in Cai and Liu (2016) for multiple
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testing of marginal correlations. Since Corr(fijlﬁi]é, €iky Eiky) = Px,jrkr Px joks T P, jiks PxX,jak: 10T
the pairs with pxjj, = Pxmk = 0, the bound on |A] is used to control the number of

relatively large correlations among pairs of the estimated partial correlations {px j j, }-

5. Simulation
In this section, we evaluate the performance of the proposed method (RRNR) in terms of
the ROC curve of the true positive rate versus the false positive rate, and its empirical
FDR and power for testing the hypotheses (2.1). We also compare the proposed method
with the existing methods in Liu (2013) (Liu), Gu et al. (2015) (GCNL), Xu et al. (2016)
(XTG), He et al. (2017) (CFC), Barber and Kolar (2018) (ROCKET) and Qiu and Zhou
(2020) (QZ). Note that GCNL, XTG, CFC and ROCKET are designed for the precision
coefficients {wy j,j,} under either the nonparanormal model or the transelliptical model, and
Liu and QZ target on testing for the precision coefficients {w; ;,j,} and the partial correlations
{pz.j1j»} of the original data, respectively. Particularly, XTG builds a distributed algorithm
for estimating (2«. In our simulation, we only adopt the inference method of XTG without
using its distributed computation algorithm. As py ;;, = 0 is equivalent to wy;,j, = 0,
we consider the hypotheses (2.1) to compare those seven methods in simulation. Also note
that multiple testing procedures are proposed in Liu, CFC and QZ approaches, but GCNL,
XTG and ROCKET only consider the inference for each element of the precision matrix €2
without a FDR control procedure. Therefore, we first present the ROC curves for comparing
all seven methods and then report the empirical sizes and powers of RRNR, Liu, QZ and
CFC when controlling the FDR at the nominal level 5%.

To generate the NPN distributed data Z;, we first generate i.id. X; = (X;,...,X;)"
from the multivariate normal distribution with mean 0 and covariance Xy = (0xj,j,)-
Then, let Z;; = h;l(Xij) by applying the inverse functions of the transformation H =

(h1(+),- .., hp(-))" on X;. Two covariance structures for 3y are considered: (i) AR covariance
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with oy j,;, = 0.6717721 and (ii) block-diagonal (BD) covariance with block size 4 x 4 and
Oxjijo = L1 = Jo) + Zi/fl pel(4(k — 1) + 1 < j; # jo2 < 4k), where p; is randomly chosen
from the uniform distribution on (0.3,0.9) for £ = 1,...,p/4. Notice that under the AR
covariance, px j, j, is nonzero only on the main diagonal and the first off-diagonal. Under the
BD covariance, the partial correlation matrix Wy is also block diagonal with size 4. Once a
covariance is generated, it is kept fixed throughout all 1000 repetitions of each simulation
setting. There are 40 different settings in our simulation, which are composed of different
sample sizes, dimensions, covariance structures and data transformations. We consider log
and cubic root (CR) transformations on all variables and on the odd variables only, as well
as the identity transformation, which leads to 5 types of data transformation H listed as

follows.

1) Identity: h;(x) = x such that Z;; = X;; forall j =1,...,p;
J J j
2) CR-All: h;(x) = /3 such that Z;; = X3 forall j =1,...,p;
J J 1)
3) CR-0dd: Z;; = X3 for odd j and Z;; = X;; for even j;
( J 17 J J
(4) Log-All: hj(z) = log(x) such that Z;; = exp(X;;) forall j =1,...,p;

(5) Log-0Odd: Z;; = exp(X;;) for odd j and Z;; = X;; for even j.

We set n = 60,100 and p = 100,400. All the scenarios are repeated 1000 times.

Let the true positive rate (TPR) and the false positive rate (FPR) of a multiple testing
procedure for the hypotheses (2.1) be the number of true positives over the number of nonzero
Px.j1j. and the number of false positives over the number of zero py ;, j,, respectively. To obtain
the ROC curve for testing the hypotheses (2.1), in each repetition, we first calculate the TPR
and FPR at a series of cut-off values on the p values of testing py j;,;, = 0 for the proposed
method RRNR, on the p values of testing wy j,j, = 0 for the GCNL, XTG, ROCKET and
CFC procedures, and on the p values of testing w, ;,;, = 0 for the Liu and QZ methods.

Then, to summarize the ROC curves over all repetitions, we bin FPR from 0 to 0.2 by an
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increment 0.01 and calculate the average maximum TPR with FPR smaller than k£ x 0.01
over the 1000 repetitions for £ = 1,...,20. Finally, we plot the average TPR versus the
sequence {k x0.01: k =1,...,20} of FPR. We also calculate the ROC curve of the nodewise
regression approach (3.5)—(3.7) applied on the true transformation, denoted by True, which
serves as an oracle benchmark. The average ROC curves under p = 100 are shown in Figures
1. The ROC curves under p = 400 are similar to those in the case of p = 100, which are

reported in Web Figure 1 in the Supporting Information.

[Figure 1 about here.]

From those two figures, we observe that the proposed RRNR method has the highest ROC
curve among the other six methods, CFC, ROCKET, QZ, Liu, GCNL and XTG, under
almost all the scenarios. It is comparable to the oracle method constructed based on the
true transformation. This shows the effectiveness of the RRNR procedure on estimating the
nonparanormal partial correlations without knowing the true transformation. The perfor-
mance of RRNR is consistent over the five transformations considered in the simulation.
This demonstrates the robustness of the proposed method to monotone transformations.
Particularly, RRNR is comparable to Liu and QZ under the identity transformation, where
the original data follow the Gaussian distribution. Note that Liu and QZ estimate the
precision coefficient and the partial correlation of the original data which provide valid tests
for the hypotheses (2.1) under this case. Compared to the procedures designed for Gaussian
data, the proposed rank-based approach does not suffer power loss in testing for conditional
independence under the Gaussian distribution. The performances of CFC, GCNL and XTG
are comparable to RRNR under the AR covariance, but they suffer some power loss under the
block-diagonal covariance. Also, the difference between RRNR and GCNL and that between
RRNR and XTG in the ROC curve are not large. However, the latter two methods are much

more computationally intensive. Their computation times are listed in Table 1. Notice that
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Liu and QZ have higher ROC curves under the settings with transformations applied on odd
variables only than those with transformations on all variables. This indicates Liu and QZ
lose power in detecting nonlinear associations. ROCKET has the lowest ROC curve, but its
performance improves when the sample size is increased to 100, which implies that ROCKET
may need a much larger sample size to obtain an accurate estimate for 2.

The computation times of the aforementioned methods for the ROC curves are reported in
Table 1, which are assessed by a SuperMicro server with two 8-core Intel Haswell processors
(2.6 GHz). We see that the proposed method is much faster than the other four methods,
CFC, ROCKET, XTG and GCNL, for the inference of nonparanormal graphical models.
This is due to the easy implementation of the lasso estimation on the rank transformed data
compared to the Dantzig type estimators. This result verifies the computational efficiency
of the proposed method discussed in Section 3.3. ROCKET is faster than XTG and GCNL,
since it uses the restricted lasso program to estimate the NPN precision matrix. GCNL under
p = 400 is not computed as it requires calculating a matrix with dimensions at the order
p? x p?, which demands a large memory. Also note that QZ has a longer computation time
than Liu because QZ uses the scaled lasso program, which is slower than the classical lasso

program.

[Table 1 about here.]

To evaluate the FDR. control of the proposed multiple testing procedure, Table 2 reports
the empirical FDR and average power (TPR) of RRNR, QZ, Liu and CFC for the hypotheses
(2.1) under the nominal FDR level 0.05. ROCKET, GCNL and XTG are not considered here
as they do not offer a multiple testing procedure. From Table 2, we see that the proposed
procedure RRNR can control the FDR around the nominal level with high power under all
the cases, although it is slightly liberal under the AR covariance structure. The power of

RRNR increases as the increase of n, and it almost reaches 1 under the AR covariance and
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n = 100. Similar to the ROC curve, the sizes and powers of RRNR are quite consistent
across different transformations under each combination of covariance structure, sample size
and dimension. This is due to the ranks of the data remain unchanged under monotone
transformations. CFC is also able to control the FDR at 5%. Although the power of CFC is
slightly inferior to that of RRNR under the AR covariance, their overall performances are
comparable under this setting. However, RRNR has a much higher power than CFC under
the block-diagonal covariance. Liu and QZ can control the FDR with a high power for the
identity transformation. However, both methods fail for the non-identity transformations, as
they are not designed for estimating nonparanormal partial correlations. Meanwhile, for the
identity transformation, the power of RRNR is comparable to those of Liu and QZ under
the block-diagonal covariance and is slightly lower than those of Liu and QZ under the AR
covariance. This manifests that the proposed method does not suffer power loss if the original

data are Gaussian distributed.

[Table 2 about here.]

6. Real data analysis

In this section, we demonstrate the utility of the proposed procedure on an FDG-PET brain
image data set (Huang et al., 2010), which was initially obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). The data contain the readings of 42 brain anatomical
volumes of interest (AVOI) from 49 Alzheimer’s disease patients (AD) and 67 normal control
subjects (NC). These 42 selected AVOIs are distributed in 4 brain regions that are identified
as the most affected ones by Alzheimer’s disease: prefrontal, parietal, occipital and temporal
lobes. The Shapiro-Wilk normality test is applied on each of the 42 variables for the AD
and NC groups, and the p value histograms of the two groups are reported in Web Figure

4 in the Supporting Information. From the histograms, we see that there are many small
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p values for both groups, indicating non-normal distributions for the readings from some
brain AVOIs. As the data may not follow the Guassian distribution, we apply the proposed
RRNR procedure to recover the nonzero NPN partial correlations px j,;,, which estimates
the graph of conditional dependence among the 42 brain AVOIs. As a comparison, we also
apply the CFC method for testing px ;, j, being zero and the QZ method for testing the
partial correlation p, ; ;, of the original data being zero. We control the FDRs of all three
methods at 0.05.

Figure 2 reports the estimated graphs of conditional dependence by the RRNR, CFC and
QZ procedures. The nodes in the graphs represent the 42 AVOIs, colored by the four brain
regions they belong to. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version. The pairs of AVOIs with significant nonzero
partial correlations (px j,;, for RRNR and CFC, and p, j,;, for QZ) are connected by lines,
which are called edges of the graph. The first and second rows in Figure 2 present the results
for the AD and NC groups, respectively. The results of RRNR, CFC and QZ are reported
in the first, second and third columns of Figure 2, respectively. For the graphs of RRNR, all
edges are colored in red. For the graphs of CFC and QZ, the common connections shared
by RRNR are colored in grey, while their distinct connections are colored in blue. Those
blue edges connect the pairs identified as conditionally dependent by either the CFC or QZ
method but not by the proposed method.

From Figure 2, we observe that RRNR discovers 213 edges for the AD group, much more
than the 35 and 86 edges made by CFC and QZ, respectively. There is only one edge,
connecting two AVOIs within the temporal lobe, discovered by CFC but not by RRNR, while
there are 179 edges discovered by RRNR but not by CFC. Comparing RRNR with QZ, there
is one edge discovered by QZ but not by RRNR, while there are 128 edges only discovered

by RRNR. For the NC group, RRNR discovers 190 edges, while CFC and QZ discover 50
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and 84 edges, respectively. Comparing RRNR with CFC, there are 7 edges only found by
CFC and 147 edges only discovered by RRNR. Comparing RRNR with QZ, there are 4 edges
exclusively detected by QZ and 110 edges only revealed by RRNR. Those findings coincide
with the results from the simulation study, which imply the proposed method could be
more powerful than the existing methods in recovering the conditional dependence structure

among variables.

[Figure 2 about here.]

7. Discussion
This paper considers testing for partial correlations under the nonparanormal model. The
NPN partial correlation can be viewed as a rank-based measure for conditional dependence,
which extends the classical partial correlation for linear dependence to nonlinear dependence.
Compared to the existing methods on estimating the NPN graphical model, the proposed
RRNR procedure is easy to implement and can be efficiently computed for data sets with a
large number of variables. Since studying the interactions among variables and exploring
their relationships is one of the critical questions in biomedical research, the proposed
method has a wide range of applications. Besides the brain connectivity study introduced
in the real data analysis, it can also be applied to study gene regulatory networks and
microbiome networks by recovering the conditional dependence structure among variables.
Another potential application is to infer the conditional association among multi-omics data,
for example, the impact of plant gene expression levels on plant phenotypes conditional on
soil microbiomes.

Estimating partial correlation is advantageous over precision coefficient, as not only does
zero partial correlation imply conditional independence, but its value also provides the

strength of conditional dependence. Besides the hypotheses (2.1) for detecting conditional
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dependence among variables, we may also be interested in the hypotheses
HE | pxin| < HY i) > 7.10
Oj1je * IPXgujz| S € VS Mg g, 2 [Pxjija| = € (7.10)

to recover the pairs with absolute NPN partial correlation greater than a pre-specified

constant ¢ € (0,1). Similar to the rejection set To(s) in (3.8) for the hypotheses (2.1), we set

Te(s) = {(1.52) « Pxuial > €+ s(1 = 7% j,5,){log(p)/n} 12}, (7.11)

and reject H, é?l 3

in (7.10) if (j1, j2) € To(s*) where

c

g . 2{1 = @(svlog )} (v* — p)
sy —mf{se((),Q] : max{ L, | T.(5) [} <o¢}.

(7.12)

If s¥ does not exist, set s¥ = 2.

In real applications, there may exist covariates that affect the response variables. For
example, the patient’s age, pre-existing conditions and risk factors may impact the brain
image readings. Let W; = (Wj,...,W;,,)" be the m dimensional covariates of the ith
observation, where m could be much larger than n. Consider the linear model

Zij = $j0 + Z Wik®jn + Ui (7.13)
k=1

for each response variable, where E(U;;) = 0 and E(U;;W;,) =0 forall j =1,...,pand k =
1,...,m.Let U; = (Uy,...,U;)" be the regression errors of the ith observation after adjust-
ing the covariates effects. We assume a nonparanormal model on U, such that X; = H(U;) =
(hi(Un), ..., hy(Uyp))" follows a p-dimensional multivariate normal distribution with mean
0 and covariance Xy with diagonal elements being one, where H(-) = (hy(:), ..., hy(-))",
and each univariate transformation function h;(-) is strictly monotone. Our focus is still
on the NPN partial correlation matrix Wy = (pxj,j,) of the normal transformed data X;.
Here, px j,;, = 0 implies that Z;; and Z;;, are conditionally independent after adjusting the
covariates W;. Regularized estimation can be applied for the regression (7.13), and let {[7”}

be the residuals. The proposed RRNR procedure can be applied on the ranks of {(Afij} for
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testing the conditional dependence among the variables of U;. We will investigate this topic

in a future work.
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Figure 1. ROC curves (p = 100) of the proposed RRNR, CFC (He et al., 2017), GCNL
(Gu et al., 2015), ROCKET (Barber and Kolar, 2018), XTG (Xu et al., 2016), Liu (Liu,
2013) and QZ (Qiu and Zhou, 2020) procedures for testing the hypotheses (2.1) of NPN
partial correlations under five transformations: identity, cubic root on all variables (CR-All),
cubic root on odd variables (CR-Odd), log on all variables (Log-All) and log on odd variables
(Log-Odd). The nodewise regression approach applied on the true transformations, denoted
by ‘True’, is included as the oracle benchmark. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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Figure 2. Graphs of the brain connectivity of the AD group (top three panels) and the NC
group (bottom three panels). The three columns show the identified nonzero NPN partial
correlation py j,;, by the proposed RRNR procedure (left) and the CFC method (center),
and the identified nonzero partial correlation p; ; ;, of the original data by the QZ method
(right), respectively. Each node represents an AVOI, which is colored by the brain region it
belongs to. Red edges indicate the discovered connections by the RRNR procedure. For the
graphs of CFC and QZ, the common connections shared by RRNR are marked in grey, and
their distinct connections are marked in blue. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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Table 1
Computation times (in seconds per repetition) of the proposed RRNR, CFC (He et al., 2017), GCNL (Gu et al.,
2015), ROCKET (Barber and Kolar, 2018), XTG (Xu et al., 2016), Liu (Liu, 2013) and QZ (Qiu and Zhou, 2020)
procedures for testing the hypotheses (2.1) under the AR covariance and the log transformation on all variables
(Log-All).

n p RRNR CFC GCNL ROCKET XTG  Liu QZ
60 100  0.37 223 1504.55 25.08 23.77  0.32  4.79
60 400 590  109.24 NA 2542.62  4146.73 4.02 88.83
100 100  0.39 271 1608.09 45.18 138.28 0.30  9.02
100 400 6.24 116.35 NA 4617.30  7168.55 4.46 142.82
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Table 2
Empirical FDRs and powers of the proposed RRNR, QZ (Qiu and Zhou, 2020), Liu (Liu, 2013) and CFC (He et al.,
2017) procedures for testing the hypotheses (2.1) of nonparanormal partial correlations at 5% nominal FDR level.

AR Covariance

. FDR Power
nop Transformation —peoe—0/y Liu  CFC RRNR QZ Liu  CFC
Tdentity 0.075  0.103 0085 0.043 0681 0776 0.753  0.598
CR-All 0.075 0376 0585 0.041 0.680 0.086 0.317  0.600
60 100  CR-Odd 0.074 0390 0288 0.044 0.675 0042 0.358  0.595
Log-All 0.075 0287 0476 0.041 0678 0.135 0416 0.597
Log-Odd 0.077 0337 0270 0.042 0.683 0.065 0.380  0.602
Tdentity 0.05] 0067 0052 0045 0454 0587 0.545 0.464
CR-All 0.051 0.630 0.832 0.046 0456 0.049 0282 0.461
60 400  CR-Odd 0.050 0.826 0.558 0.042 0455 0.009 0.197  0.464
Log-All 0.051 0534 0.734 0.043 0456 0.092 0.355 0.465
Log-Odd 0.050 0.802 0.49% 0.043 0455 0.009 0.189  0.462
Tdentity 0.091 0.087 0.077 0037 0970 0080 0.78 0.908
CR-All 0.092 0174 0465 0.037 0970 0089 0.558  0.908
100 100  CR-Odd 0.094 0.142 0244 0036 0969 0105 0.806  0.908
Log-All 0.091 0.141 0391 0037 0969 0.163 0.683  0.907
Log-0Odd 0.092 0131 0239 0037 0970 0159 0.820  0.909
Tdentity 0.071 0.080 0078 0.033 0929 0954 0949 0.856
CR-All 0.072 0368 0724 0.034 0929 0067 0497 0.858
100 400  CR-Odd 0.072 0411 0361 0034 0929 0038 0682 0.857
Log-All 0.072 0306 0.629 0.033 0929 0.122 0.619 0.857

Log-Odd 0.071  0.370  0.334 0.033 0.929 0.057 0.698 0.858
BD Covariance

. FDR Power
nop Transformation —pere—r7— 15 GFC RENR QZ T CFC
Tdentity 0.036  0.044 0035 0.020 0784 0811 0.794 0471
CR-All 0.038  0.107 0369 0.030 0.785 0.238 0.508 0.476
60 100  CR-Odd 0.036  0.058 0140 0.030 0.784 0275 0590  0.481
Log All 0.037  0.083 0275 0029 0784 0305 0566 0.464
Log-Odd 0.037 0045 0112 0030 0.784 0289 0.602  0.464
Tdentity 0.020 0036 0027 0.027 0727 0774 0.761 0420
CR-All 0.028 0233 0641 0027 0.726 0197 0517  0.403
60 400  CR-Odd 0.020 0.115 0274 002 0726 0.186 0577 0.411
Log-All 0020 0.178 0521 0.027 0726 0257 0.581  0.419
Log-Odd 0.020 008 0214 0027 0727 0200 0592  0.411
Tdentity 0.041 0045 0041 0.035 0904 0892 0.886 0.636
CR-All 0.041 0.052 0331 0034 0906 0181 0597  0.659
100 100  CR-Odd 0.040 0.032 0130 0.034 0906 0253 0.695 0.638
Log-All 0.042 0050 0264 0.035 0905 0242 0.642  0.642
Log-Odd 0.041 0029 0113 0.034 0906 0292 0.701  0.639
Tdentity 0.037 0.042 0036 0031 0893 0909 0901 0.610
CR-All 0.037  0.107 0581 0.030 0.893 0.197 0.614  0.596
100 400  CR-Odd 0.037 0073 0247 0.030 0893 0240 0.713  0.605
Log-All 0.037  0.106 0493 0.031 0893 0257 0.669 0.603

Log-Odd 0.038 0.072 0.211 0.030 0.893 0.278 0.719  0.607

This article is protected by copyright. All rights reserved.



