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Summary:

Partial correlation is a common tool in studying conditional dependence for Gaussian distributed data. However,

partial correlation being zero may not be equivalent to conditional independence under non-Gaussian distributions. In

this paper, we propose a statistical inference procedure for partial correlations under the high-dimensional nonpara-

normal (NPN) model where the observed data are normally distributed after certain monotone transformations. The

nonparanormal partial correlation is the partial correlation of the normal transformed data under the NPN model,

which is a more general measure of conditional dependence. We estimate the NPN partial correlations by regularized

nodewise regression based on the empirical ranks of the original data. A multiple testing procedure is proposed

to identify the nonzero NPN partial correlations. The proposed method can be carried out by a simple coordinate

descent algorithm for lasso optimization. It is easy-to-implement and computationally more efficient compared to the

existing methods for estimating NPN graphical models. Theoretical results are developed to show the asymptotic

normality of the proposed estimator and to justify the proposed multiple testing procedure. Numerical simulations and

a case study on brain imaging data demonstrate the utility of the proposed procedure and evaluate its performance

compared to the existing methods. Data used in preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database.
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1. Introduction

Measures of dependence are commonly used to understand the interactions among variables

and the data generation mechanism of a complex system. Studying variable dependence is an

essential problem in many biological studies, especially in the experiments that collect data

from a large number of variables, for example, studying gene expression network (Wang and

Huang, 2014) and brain connectivity (Huang et al., 2010; Qiu and Zhou, 2020, 2021). It is

widely believed that different brain regions work together in performing our daily activities

(Bullmore and Sporns, 2009). However, neurodegenerative diseases, such as Alzheimer’s

disease, may alter the interactions among brain regions (Supekar et al., 2008; Qiu and Zhou,

2020). Therefore, understanding the brain functional connectivity can help the diagnosis and

treatment of such diseases.

Partial correlation measures conditional dependence after controlling the effects of other

variables. Compared to marginal correlation, it provides a direct association between two

variables after adjusting the confounding effects of other variables. When the number of

variables is greater than the sample size, estimates for partial correlation cannot be directly

computed as the sample covariance matrix is not invertible. Over the past decade, estimating

a high-dimensional precision matrix has gained increasing attention. Under a suitable sparsity

condition on the population precision matrix, it can be consistently estimated by the neigh-

borhood selection method (Meinshausen and Bühlmann, 2006), graphical lasso (Friedman

et al., 2008), and CLIME (Cai et al., 2011, 2016) by penalized estimation or constraint `1

norm optimization. See other penalized estimators in Ming and Yi (2007); Banerjee et al.

(2008); Peng et al. (2009). Statistical inference procedures for high-dimensional precision or

partial correlation matrices were constructed in Liu (2013); Ren et al. (2015); Wang et al.

(2016); Chang et al. (2018); Qiu and Zhou (2020) using residuals from either pairwise or

nodewise regressions.
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Despite the popularity, the equivalence between zero partial correlation and conditional

independence relies on the Gaussian assumption. To construct more general dependence

measures under non-Gaussian distributions, Liu et al. (2009) introduced the nonparanormal

(NPN) model where the data are normally distributed after certain unknown monotone

transformations. Under the NPN model, the NPN partial correlations of the normal trans-

formed data can be used to infer conditional independence. Liu et al. (2012); Xue and Zou

(2012) proposed regularized estimates for precision matrices under the NPN graphical model.

However, statistical inference procedures were not considered.

Gu et al. (2015); Xu et al. (2016); He et al. (2017); Barber and Kolar (2018) constructed

novel statistical inference procedures for each entry of the precision matrix under either

the NPN model or a more general transelliptical model with theoretical guarantees. In

particular, He et al. (2017) proposed a multiple testing procedure for recovering nonzero NPN

precision coefficients. All the aforementioned approaches estimate the precision coefficients

by a regularized inverse of the covariance estimate, obtained by the sine transformation

of the sample Kendall’s τ from the original data. However, such a covariance estimate

may not be positive semi-definite, which may incur non-convexity issues in estimating the

precision coefficients and bring heavy computation. Moreover, those inference procedures

require estimating the variance of a debiased estimator of the regularized inverse, which is

computationally intensive for data sets with many variables. A more detailed discussion on

the computation of those methods is presented in Section 3.3.

In this paper, we propose a computationally efficient and easy-to-implement approach via

regularized rank-based nodewise regression (RRNR) to estimate and test the partial corre-

lations under the NPN model. The proposed approach applies nodewise regression on the

normal quantile transformation of the empirical ranks of the original data. A multiple testing

procedure is constructed to recover the nonzero partial correlations. The proposed procedure
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can be implemented by a simple coordinate descent algorithm for lasso optimization and does

not suffer from non-convexity issues in computation. Theoretical results show that the RRNR

estimator of partial correlation is asymptotically normal under a high-dimensional setting,

and the proposed multiple testing procedure can control the false discovery rate (FDR) at the

nominal level. Simulation studies are conducted to evaluate the performance of the proposed

procedure, which shows that it reaches the highest power among the existing methods while

controls the FDR. Empirical analysis on a brain imaging data set demonstrates the utility

of the proposed procedure in practice.

The rest of the paper is organized as follows. The nonparanormal model and the hypotheses

of interest are introduced in Section 2. The proposed RRNR estimator, the multiple testing

procedure, and the connection between the proposed estimator and the existing methods

are given in Section 3. Section 4 provides theoretical properties for the proposed method.

Simulation studies and a real data analysis are reported in Sections 5 and 6, respectively.

Discussion on the applications and future extensions of the proposed method is presented in

Section 7. All technical proofs are relegated to the Supporting Information.

2. Preliminary and Model

In this section, we introduce the nonparanormal model and the target partial correlations

under this model. The notations to be used throughout the paper are summarized in the

following. For an nˆp matrix A “ pAijqnˆp, let Apjq denote the jth column of A, and A´j be

the sub-matrix of A without the jth column. Let |A|8 “ max1ďiďn,1ďjďp |Aij| be the matrix

element-wise maximum norm. For a vector a “ pa1, . . . , adqT P Rd, let |a|q “ p
ř

1ďjďd |aj|qq1{q

denote the `q norm of a, and |a|0 “
řd
j“1 Ipaj ‰ 0q and |a|8 “ max1ďjďd |aj| be the `0 and

`8 norms of a, where Ip¨q is the indicator function. Let a´j be the sub-vector without the

jth component.

Let Z “ pZ1, . . . ,ZnqT be the observed data matrix, where Zi “ pZi1, . . . , ZipqT for



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

4 Biometrics, 000 0000

i “ 1, . . . , n, and the dimension p could be much larger than the sample size n. Sup-

pose the observations tZiuni“1 are independent and identically distributed (i.i.d.) random

vectors drawn from a p-dimensional distribution FZ with mean µZ “ pµZ,1, . . . , µZ,pqT and

covariance ΣZ “ pσZ,j1j2q. Let ΩZ “ pωZ,j1j2q “ Σ´1
Z be the precision matrix of Zi. We

assume Zi follows the nonparanormal distribution NPNpΣX,Hq, where ΣX “ pσX,j1j2q,
and Hp¨q “ ph1p¨q, . . . , hpp¨qqT is a p-dimensional transformation with strictly monotone

univariate functions hjp¨q for j “ 1, . . . , p. The nonparanormal model assumes that the

transformed data Xi “ HpZiq “ ph1pZi1q, . . . , hppZipqqT follows a p-dimensional multivariate

normal distribution with mean 0 and covariance ΣX with diagonal elements σX,jj “ 1 for all

j “ 1, . . . , p. Let ΩX “ pωX,j1j2q “ Σ´1
X be the precision matrix of Xi, and X “ pX1, . . . ,XnqT

be the transformed data matrix. Let ΨZ “ pρZ,j1j2q and ΨX “ pρX,j1j2q be the partial

correlation matrices of the observed observation Zi and the normal transformed data Xi,

respectively, where ρZ,j1j2 “ ´ωZ,j1j2pωZ,j1j1ωZ,j2j2q´1{2 and ρX,j1j2 “ ´ωX,j1j2pωX,j1j1ωX,j2j2q´1{2

from the relationship between partial correlations and precision coefficients (Peng et al., 2009,

Lemma 1).

Notice that, under the NPN model, σX,j1j2 “ 0 is equivalent to the j1th and j2th variables

being marginally independent which implies σZ,j1j2 “ 0. But the other direction of this

conclusion may not hold as σZ,j1j2 being zero does not guarantee the independence between

the two variables. This indicates nonzero σZ,j1j2 implies σX,j1j2 ‰ 0, and the support of

ΣX includes that of ΣZ. Similarly, under the NPN model, ωX,j1j2 “ 0 is equivalent to the

conditional independence of Zij1 and Zij2 given the rest of variables. However, this does not

necessarily indicate ωZ,j1j2 “ 0 since the partial correlation between Zij1 and Zij2 only takes

off the linear effects of all other variables. Nonlinear effects of Z´pj1,j2q may still exist and

make ωZ,j1j2 nonzero even if the j1th and j2th variables are conditionally independent. See

Example 4 in Baba et al. (2004) as an illustration of this point by the lognormal distribution.
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This means that conditional independence has no close ties with zero partial correlation

of the original data tZiu except in the case of multivariate normal distributed Zi, and the

partial correlation ΨX of the transformed data is a more accurate measure for the conditional

independence of Zi since ρX,j1j2 “ 0 is equivalent to the conditional independence between

those two variables under the NPN model. Therefore, the target parameters in this paper

are all the elements ρX,j1j2 in the high-dimensional NPN partial correlation matrix ΨX of the

latent variables Xi. Particularly, we are interested in the multiple hypotheses

H0,j1j2 : ρX,j1j2 “ 0 vs. Ha,j1j2 : ρX,j1j2 ‰ 0 (2.1)

to identify the nonzero NPN partial correlations. Compared to the precision coefficient ωX,j1j2

under the NPN model, not only can the partial correlation ρX,j1j2 show whether two variables

are conditionally dependent or not, but also it provides the strength of the conditional

dependence.

From Lemma 1 in Peng et al. (2009), the partial correlation ρX,j1j2 can be obtained from

p nodewise regressions on the transformed data Xi as

Xij1 “ βj1,0 `
ÿ

j2‰j1
βj1,j2Xij2 ` εij1 , (2.2)

where εij1 and Xi,´j1 are uncorrelated for j1 “ 1, . . . , p. Let εi “ pεi1, . . . , εipqT and V “
pvj1j2q “ covpεiq be the covariance matrix of the regression error εi. It can be shown that

ρX,j1j2 “ ´
ωX,j1j2?

ωX,j1j1ωX,j2j2

“ ´ vj1j2?
vj1j1vj2j2

for j1 ‰ j2. (2.3)

In the following section, we propose an estimator for ρX,j1j2 with an inference procedure

based on the ranks of tZijuni“1 and the relationship (2.3).

3. Method

In this section, we introduce the regularized rank-based nodewise regression (RRNR) proce-

dure for estimating the nonparanormal partial correlations and a multiple testing procedure

for the hypotheses (2.1) with FDR control based on the proposed estimator.
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3.1 RRNR procedure

The proposed RRNR procedure first estimates tXijuni“1 by the ranks of tZijuni“1 and then

applies a regularized regression method on (2.2) with the estimated Xi to estimate the

nonparanormal partial correlation ρX,j1j2 .

Let Φp¨q and Φ´1p¨q be the cumulative distribution function (cdf) and the quantile function

of the standard normal distribution, respectively. It can be shown that hjp¨q “ Φ´1tFjp¨qu
for j “ 1, . . . , p, where Fjp¨q is the cdf of Zij. Note that FjpZijq follows the Uniformp0, 1q
distribution as Zij is a continuous random variable under the NPN model. Let rij denote

the rank of Zij among the n observations tZkjunk“1 for i “ 1, . . . , n and j “ 1, . . . , p. It is

natural to estimate hjp¨q by plugging in the winsorized empirical cdf pFn,jpxq of tZijuni“1, where

pFn,jpxq “ mint rFn,jpxq, 1 ´ 1{n2u is an estimate of Fjp¨q, and rFn,jpxq “ 1
n

řn
k“1 IpZkj ď xq is

the empirical cdf of tZkjunk“1. Let

pXij “ phjpZijq “ Φ´1t pFn,jpZijqu “

$
’&
’%

Φ´1prij{nq , rij ă n;

Φ´1p1´ 1{n2q, rij “ n

(3.4)

be the estimated Xij based on the rank of Zij, where the last equality is due to pFn,jpZijq “
rij{n. The use of the winsorization Φ´1p1´1{n2q is to avoid the transformation being infinity

for the maximum value of tZijuni“1. Similar estimator of Xij was considered in Liu et al.

(2009) with a winsorization of trij{nu at the level n´1{4plog nq´1{2 and 1 ´ n´1{4plog nq´1{2

for the lower and upper empirical quantiles, respectively. Mai and Zou (2015) also used the

winsorized estimator in discriminant analysis under the NPN model.

Let pXi “ p pXi1, . . . , pXipqT for i “ 1, . . . , n, and pX “ ppX1, . . . , pXnqT. We fit the nodewise

regressions (2.2) with the empirically transformed data tpXiu by lasso (Tibshirani, 1996).

Note that
řn
i“1 pXij “ Φ´1p1 ´ 1{n2q for all 1 ď j ď p. Let dn “ Φ´1p1 ´ 1{n2q{n, which is

the average of the empirically transformed data t pXijuni“1 for each variable. Let Dn “ dn1p,
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where 1p is a p-dimensional vector of 1. Since dn is at the order
a

logpnqn´1, Dn is negligible

in our theoretical analysis.

Let βj “ pβj,1, . . . , βj,j´1,´1, βj,j`1, . . . , βj,pqT be the coefficients of regressing Xij on the

rest of variables in (2.2) with βj,j “ ´1. We estimate βj by lasso as

pβj “ arg min
βj , βj,j“´1

„
1

n

nÿ

i“1
tβT

j ppXi ´Dnqu2 ` λj
ÿ

1ďk‰jďp
|βj,k|


(3.5)

for a penalty parameter λj. Let pεi “ ppεi1, . . . ,pεipqT be the residuals of the ith observation

from the p nodewise regressions for i “ 1, . . . , n, where pεij “ ´pβT

j ppXi ´Dnq. Similar to Liu

(2013); Qiu and Zhou (2020), we construct the bias corrected estimator

pvj1j2 “ ´
1

n

nÿ

i“1
ppεij1pεij2 ` pβj1,j2pε 2

ij2
` pβj2,j1pε 2

ij1
q (3.6)

for 1 ď j1, j2 ď p to estimate the covariance matrix V “ covpεiq. From the relationship (2.3),

the proposed RRNR estimator for the nonparanormal partial correlation ρX,j1j2 is

pρX,j1j2 “ ´
pvj1j2

ppvj1j1pvj2j2q1{2
for j1 ‰ j2. (3.7)

The first advantage of the proposed estimator is the convexity and the normally distributed

covariates t pXiju of the lasso program (3.5) for the nodewise regressions, which can be

efficiently solved by existing algorithms like coordinate descent and least angle regression.

Once the nodewise regressions are fitted, the computation of pρX,j1j2 is only based on simple

arithmetic calculations. The computation complexity of estimating all partial correlations

is at the order np2. Secondly, from Theorem 1 in Section 4, we have that
?
npρX,j1j2 is

asymptotically normal with mean 0 and variance 1 under some regularity conditions and

the null hypothesis ρX,j1j2 “ 0. Therefore, a multiple testing procedure for the hypotheses

(2.1) can be constructed only based on tpρX,j1j2u, which does not require the estimation of

additional parameters. This is introduced in the next subsection.
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3.2 Multiple testing procedure

We construct a multiple testing procedure for ρX,j1j2 based on the asymptotic normality of

pρX,j1j2 . Specifically, let

T0psq “  pj1, j2q : |pρX,j1j2 | ą sp1´ qρ 2
X,j1j2

qtlogppq{nu1{2( (3.8)

be the set to recover the nonzero ρX,j1j2 , where qρX,j1j2 “ pρX,j1j2Ir|pρX,j1j2 | ą 2tlogppq{nu1{2s is

the thresholding estimator of ρX,j1j2 .

To choose the cut-off value s in T0psq, we control the FDR of the hypotheses (2.1) at

a pre-specified value α. Note that FDR is the expectation of false discovery proportion

(FDP), which is defined as the number of false positives over the number of discoveries. Let

S0 “ tpj1, j2q : ρX,j1j2 “ 0u be the set of zero nonparanormal partial correlations. For any set

A, let |A| be the cardinality of A. The FDP of T0psq in (3.8) can be expressed as

FDP0psq “ |T0psq X S0|
maxt1, |T0psq|u ,

where the numerator can be approximated by its expectation
ř
pj1,j2qPS0

EpIr|pρX,j1j2 | ą sp1´
qρ 2
X,j1j2

qtlogppq{nu1{2sq which is bounded by 2t1´Φps?log pqupp2´ pq asymptotically. There-

fore, to control the FDR of T0psq at α P p0, 1q, we choose

s˚0 “ inf

"
s P p0, 2s :

2t1´ Φps?log pqupp2 ´ pq
maxt1, |T0psq|u ď α

*
. (3.9)

If s0̊ does not exist, set s0̊ “ 2. The proposed multiple testing procedure rejects the null

hypothesis H0,j1j2 in (2.1) if pj1, j2q P T0ps0̊q. Since t1´ Φp2?log pqupp2 ´ pq Ñ 0 as pÑ 8,

there is no need to search the cut-off value s in (3.9) beyond 2.

3.3 Connections to the existing methods

Under the high-dimensional NPN model, the existing methods (Liu et al., 2012; Xue and

Zou, 2012) estimate the precision matrix ΩX via the trigonometric relationship σX,j1j2 “
sinpπτZ,j1j2{2q between the covariance of the transformed data and the Kendall’s τ of the

original data, where τZ,j1j2 denotes the population Kendall’s τ coefficient between Zij1 and
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Zij2 . Let rτZ,j1j2 be the sample Kendall’s τ of τZ,j1j2 , rσX,j1j2 “ sinpπrτZ,j1j2{2q be the trigono-

metric estimator of σX,j1j2 , and rΣX “ prσX,j1j2q. Particularly, recent works (Gu et al., 2015;

Xu et al., 2016; He et al., 2017; Barber and Kolar, 2018) developed inference procedures for

each of the precision coefficient ωX,j1j2 based on rΣX.

Since rΣX may not be positive semi-definite which leads to non-convex optimization, ei-

ther the restricted lasso estimator (Barber and Kolar, 2018) or the Dantzig selector type

estimator (Gu et al., 2015; Xu et al., 2016; He et al., 2017) is used to estimate ΩX based

on rΣX. The restricted lasso estimation requires an additional tuning parameter that bounds

the `1 norm of the estimated ΩX. However, there is no practical guideline to choose this

constraint parameter and an inappropriate value may lead to unstable results due to the

non-convex optimization. Although the Dantzig selector does not have the non-convexity

issue, it is computationally slower than Lasso type methods, especially for large p cases. As

a comparison, the proposed method only requires the classical convex lasso estimation (3.5)

on the nodewise regressions of the rank-transformed data pXi, which can be solved efficiently.

Moreover, the debiased estimators of ωX,j1j2 in Gu et al. (2015); Xu et al. (2016); Barber

and Kolar (2018) are constructed by formulations related to the matrix product rΩX
rΣX

rΩX,

where rΩX is the regularized inverse of rΣX by the restricted lasso method or the Dantzig

selector. But the variances of such debiased estimators are much more complex than that

of the proposed partial correlation estimator. Testing for each ωX,j1j2 requires calculating

quadratic products of a p ˆ p matrix that is constructed by using all pairs tZi1 ,Zi2u of

the original data. Given a regularized estimate of ΩX, the computation complexity of those

methods for the inference of all precision coefficients is at least at the order n2p4, which

is higher than the computation complexity np2 of the proposed method. The computation

times of those methods in the simulation study are reported in Table 1, which verifies this

point.
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Despite of the fast computation of the proposed method, it requires a slightly more

restrictive sparsity condition on the maximum number of nonzero elements in each row of ΩX

by a factor of n´2δ0plog pq´1 compared with that in Gu et al. (2015); Xu et al. (2016); Barber

and Kolar (2018), where δ0 is an arbitrarily small positive constant. The extra condition is

due to controlling the variation of estimating the distribution function Fjpxq by the empirical

cdf rFn,jpxq. More detailed discussion on the theoretical results is provided in the next section.

4. Theory

In this section, we show the consistency of the rank-based lasso estimator pβj in (3.5), and

derive the asymptotic distribution of the proposed RRNR estimator pρX,j1j2 in (3.7). Based

on these results, we show the FDR control of the proposed multiple testing procedure (3.9)

for the hypotheses (2.1).

Let λp ď . . . ď λ1 be the eigenvalues of the NPN precision matrix ΩX. Recall that ΩX,pjq

denotes the jth column of ΩX. Let s0 “ max1ďjďp |ΩX,pjq|0 and s1 “ max1ďjďp |ΩX,pjq|1 be

the maximum number of nonzero elements in each column of ΩX and its matrix `1 norm,

respectively. Let C be a positive constant which may change under different occasions. We

make the following assumptions on the sparsity and eigenvalues of ΩX.

Condition 1: Assume s0 “ otn1{2´δ0plog pq´1u for an arbitrarily small constant δ0 ą 0.

Condition 2: There exists a positive constant C, such that C´1 ď λp ď λ1 ď C.

Condition 1 regulates the sparsity of ΩX, which is needed for establishing the consistency of

pβj from the nodewise regression (3.5) of pX. A slightly weaker condition max1ďjďp |ΩZ,pjq|0 “
otn1{2plog pq´3{2u is required for the high-dimensional nodewise regression of the observed

data Z and the statistical inference for its precision matrix ΩZ and partial correlation matrix

ΨZ (Liu, 2013; Chang et al., 2018; Qiu and Zhou, 2020). We need a more restrictive sparsity

condition for testing each element of ΨX due to the unobservable Xi under the NPN model
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and the estimation of the distribution function Fjpxq for each variable. Condition 2 requires

the eigenvalues of ΩX being bounded away from 0 and infinity, which is commonly assumed

in the literature on estimating high-dimensional covariance and precision matrices (Bickel

and Levina, 2008). This condition also implies that max1ďj1ăj2ďp |ρX,j1j2 | ď 1´ c0 for a small

positive constant c0.

Let s0,j “ |βj|0 and s1,j “ |βj|1. Notice that |βj|0 “ |ΩX,pjq|0, s0,j ď s0 and s1,j ď Cs1

for j “ 1, . . . , p. We first establish the consistency of the rank-based lasso estimator. The

following proposition gives a uniform bound for the `1 and `2 distance between βj and its

estimator pβj for all j. The statistical property of the partial correlation estimator pρX,j1j2 can

be derived based on this result.

Proposition 1: Under Conditions 1 and 2, and a penalty parameter λj in (3.5) at the

order s1,jplog pqn´1{2`δ for any δ P p0, 1{3q, we have

max
1ďjďp |pβj ´ βj|1 ď Cλjs0,j and max

1ďjďp |pβj ´ βj|2 ď Cλjs
1{2
0,j

with probability 1´ p´c for a positive constant c.

Proposition 1 provides the convergence rates of pβj to βj. It extends the classical theoretical

results of lasso (Bühlmann and Van De Geer, 2011) with observed covariates and response

to the case with estimated covariates and response by the empirical ranks of the data.

Compared to the classical lasso with `1 and `2 convergence rates at s0,jtlogppq{nu1{2 and

ts0,j logppq{nu1{2, the proposed rank-based estimator pβj has slower convergence rates due to

the use of a larger penalty level λj to control the additional variation caused by estimating

the distribution functions tFjpxqu. Notice that the bound for |ppXpjq ´ pX´jβjqT pX´j{n|8 is

increased by replacing X with pX, even though |εT

pjqX´j{n|8 “ Opptlogppq{nu1{2q, where

εpjq “ pε1j, . . . , εnjqT are the regression errors from the jth nodewise regression in (2.2).

Under the condition of bounded `1 norm of ΩX which is assumed in Gu et al. (2015); Xu
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et al. (2016); He et al. (2017) for testing coefficients of ΩX, the `1 and `2 convergence rates

of pβj are s0,j logppqn´1{2`δ and s
1{2
0,j logppqn´1{2`δ, respectively. Those rates are inferior to the

classical lasso by a factor plog pq1{2nδ, where δ is an arbitrarily small positive constant. Barber

and Kolar (2018) also considered testing for each component of ΩX via an approach related

to pairwise regression for precision matrices (Ren et al., 2015). The estimated coefficients

from the pairwise regression enjoy similar convergence rates of the classical lasso. However,

as discussed in Section 3.3, their approach encounters non-convexity issues in the regularized

regression and requires heavier computation.

Recall that S0 “ tpj1, j2q : ρX,j1j2 “ 0u is the set of zero nonparanormal partial correlations.

The following theorem establishes the asymptotic expansion of the estimator pvj1j2 for the

covariance between the nodewise regression errors tεiju over S0, which implies the asymptotic

normality of pρX,j1j2 .

Theorem 1: Under the conditions in Proposition 1, p ď nξ for a positive constant

ξ, and s0s
2
1 “ otn1{2´2δ0plog pq´2u for an arbitrarily small positive constant δ0, we have

maxj1‰j2 |pρX,j1j2 ´ ρX,j1j2 | Ñ 0 as n, pÑ 8. Particularly, pvj1j2 “ ´
řn
i“1 εij1εij2{n` oppn´1{2q

for all pj1, j2q P S0, where the small order term oppn´1{2q is uniform over S0. Moreover,

?
npρX,j1j2 Ñ Np0, 1q as n, pÑ 8 for all pj1, j2q P S0.

This asymptotic normality result in Theorem 1 is the foundation of the proposed multiple

testing procedure. As discussed after Condition 2, Theorem 1 requires a more strict sparsity

condition on s0 than max1ďjďp |ΩZ,pjq|0 “ otn1{2plog pq´3{2u in estimation and inference of

ωZ,j1j2 (Liu, 2013). If the `1 norm of ΩX is bounded, Theorem 1 prescribes s0 being at a smaller

order of n1{2´2δ0plog pq´2 for a small positive constant δ0, which is milder than the sparsity

conditions (s0 “ otn1{4plog pq´1{2u) made in Theorem 4.5 in He et al. (2017). However, our

sparsity condition is stronger than that (s0 “ otn1{2plog pq´1u) made in Gu et al. (2015);

Barber and Kolar (2018) for the inference of ωX,j1j2 . The more restrictive condition on s0 by
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a factor n´2δ0plog pq´1 is caused by controlling the difference between Xi and its estimate

X̂i from the empirical ranks. In general, as s1 ď C
?
s0 for a positive constant C, a sufficient

condition for s0s
2
1 “ otn1{2´2δ0plog pq´2u is s0 “ otn1{4´δ0plog pq´1u. This requires the number

of nonzero elements in each row of ΩX being at a smaller order of n1{4.

Let S0 be the compliment of S0, which is the set of signals in ΨX. Let FDP0ps0̊q “
|T0ps0̊qXS0|{maxt1, |T0ps0̊q|u be the FDP of the proposed multiple testing procedure for the

hypotheses (2.1), where T0psq and s0̊ are given in (3.8) and (3.9). To study the type I error

of the proposed multiple testing procedure, we make an additional technical assumption.

Condition 3: Let M “ tpj1, j2q : |ρX,j1j2 | ą rC1plog pqn´1{2`δu for a small positive

constant δ. Assume |M| ą rC2

?
log p for positive constants rC1 and rC2.

Condition 3 is a mild condition on the NPN partial correlation matrix ΨX, which requires

at least rC2

?
log p elements in ΨX with absolute values larger than rC1plog pqn´1{2`δ, where

δ is a small positive constant. It guarantees the number of significant nonzero ρX,j1j2 by the

proposed procedure (3.9) is at least of the order
?

log p. The following theorem presents the

FDR control of the significant set T0ps0̊q for the hypotheses (2.1).

Theorem 2: Under the conditions in Theorem 1, Condition 3, s0 ď Cpplog pq´1´η1 for

positive constants C and η1, we have that limn,pÑ8 PpFDP0ps0̊q ď α` εq “ 1 for any ε ą 0.

Theorem 2 shows that the proposed multiple testing procedure can control the FDR at the

nominal level α. The condition s0 ď Cpplog pq´1´η1 implies that the number of nonzero par-

tial correlations in each row of ΨX is less than the order p{plog pq1`η1 for a positive constant

η1. It is satisfied if
?
n ď Cp under Condition 1. Let N “ tpj1, j2q : ρX,j1j2 ě plog pq´1´η2u

be the set of relatively large NPN partial correlations (larger than a multi-log p term that

converges to zero), where η2 is a positive constant. This condition leads to a bound on the size

of N such that |N | ď Cp2{plog pq1`η1 , which is required in Cai and Liu (2016) for multiple
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testing of marginal correlations. Since corrpεij1εij2 , εik1εik2q “ ρX,j1k1ρX,j2k2 ` ρX,j1k2ρX,j2k1 for

the pairs with ρX,j1j2 “ ρX,k1k2 “ 0, the bound on |N | is used to control the number of

relatively large correlations among pairs of the estimated partial correlations tpρX,j1j2u.

5. Simulation

In this section, we evaluate the performance of the proposed method (RRNR) in terms of

the ROC curve of the true positive rate versus the false positive rate, and its empirical

FDR and power for testing the hypotheses (2.1). We also compare the proposed method

with the existing methods in Liu (2013) (Liu), Gu et al. (2015) (GCNL), Xu et al. (2016)

(XTG), He et al. (2017) (CFC), Barber and Kolar (2018) (ROCKET) and Qiu and Zhou

(2020) (QZ). Note that GCNL, XTG, CFC and ROCKET are designed for the precision

coefficients tωX,j1j2u under either the nonparanormal model or the transelliptical model, and

Liu and QZ target on testing for the precision coefficients tωZ,j1j2u and the partial correlations

tρZ,j1j2u of the original data, respectively. Particularly, XTG builds a distributed algorithm

for estimating ΩX. In our simulation, we only adopt the inference method of XTG without

using its distributed computation algorithm. As ρX,j1j2 “ 0 is equivalent to ωX,j1j2 “ 0,

we consider the hypotheses (2.1) to compare those seven methods in simulation. Also note

that multiple testing procedures are proposed in Liu, CFC and QZ approaches, but GCNL,

XTG and ROCKET only consider the inference for each element of the precision matrix ΩX

without a FDR control procedure. Therefore, we first present the ROC curves for comparing

all seven methods and then report the empirical sizes and powers of RRNR, Liu, QZ and

CFC when controlling the FDR at the nominal level 5%.

To generate the NPN distributed data Zi, we first generate i.i.d. Xi “ pXi1, . . . , XipqT

from the multivariate normal distribution with mean 0 and covariance ΣX “ pσX,j1j2q.
Then, let Zij “ h´1j pXijq by applying the inverse functions of the transformation H “
ph1p¨q, . . . , hpp¨qqT on Xi. Two covariance structures for ΣX are considered: (i) AR covariance
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with σX,j1j2 “ 0.6|j1´j2|, and (ii) block-diagonal (BD) covariance with block size 4 ˆ 4 and

σX,j1j2 “ Ipj1 “ j2q `
řp{4
k“1 ρkIp4pk ´ 1q ` 1 ď j1 ‰ j2 ď 4kq, where ρk is randomly chosen

from the uniform distribution on p0.3, 0.9q for k “ 1, . . . , p{4. Notice that under the AR

covariance, ρX,j1j2 is nonzero only on the main diagonal and the first off-diagonal. Under the

BD covariance, the partial correlation matrix ΨX is also block diagonal with size 4. Once a

covariance is generated, it is kept fixed throughout all 1000 repetitions of each simulation

setting. There are 40 different settings in our simulation, which are composed of different

sample sizes, dimensions, covariance structures and data transformations. We consider log

and cubic root (CR) transformations on all variables and on the odd variables only, as well

as the identity transformation, which leads to 5 types of data transformation H listed as

follows.

(1) Identity: hjpxq “ x such that Zij “ Xij for all j “ 1, . . . , p;

(2) CR–All: hjpxq “ x1{3 such that Zij “ X3
ij for all j “ 1, . . . , p;

(3) CR–Odd: Zij “ X3
ij for odd j and Zij “ Xij for even j;

(4) Log–All: hjpxq “ logpxq such that Zij “ exppXijq for all j “ 1, . . . , p;

(5) Log–Odd: Zij “ exppXijq for odd j and Zij “ Xij for even j.

We set n “ 60, 100 and p “ 100, 400. All the scenarios are repeated 1000 times.

Let the true positive rate (TPR) and the false positive rate (FPR) of a multiple testing

procedure for the hypotheses (2.1) be the number of true positives over the number of nonzero

ρX,j1j2 and the number of false positives over the number of zero ρX,j1j2 , respectively. To obtain

the ROC curve for testing the hypotheses (2.1), in each repetition, we first calculate the TPR

and FPR at a series of cut-off values on the p values of testing ρX,j1j2 “ 0 for the proposed

method RRNR, on the p values of testing ωX,j1j2 “ 0 for the GCNL, XTG, ROCKET and

CFC procedures, and on the p values of testing ωZ,j1j2 “ 0 for the Liu and QZ methods.

Then, to summarize the ROC curves over all repetitions, we bin FPR from 0 to 0.2 by an
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increment 0.01 and calculate the average maximum TPR with FPR smaller than k ˆ 0.01

over the 1000 repetitions for k “ 1, . . . , 20. Finally, we plot the average TPR versus the

sequence tkˆ0.01 : k “ 1, . . . , 20u of FPR. We also calculate the ROC curve of the nodewise

regression approach (3.5)–(3.7) applied on the true transformation, denoted by True, which

serves as an oracle benchmark. The average ROC curves under p “ 100 are shown in Figures

1. The ROC curves under p “ 400 are similar to those in the case of p “ 100, which are

reported in Web Figure 1 in the Supporting Information.

[Figure 1 about here.]

From those two figures, we observe that the proposed RRNR method has the highest ROC

curve among the other six methods, CFC, ROCKET, QZ, Liu, GCNL and XTG, under

almost all the scenarios. It is comparable to the oracle method constructed based on the

true transformation. This shows the effectiveness of the RRNR procedure on estimating the

nonparanormal partial correlations without knowing the true transformation. The perfor-

mance of RRNR is consistent over the five transformations considered in the simulation.

This demonstrates the robustness of the proposed method to monotone transformations.

Particularly, RRNR is comparable to Liu and QZ under the identity transformation, where

the original data follow the Gaussian distribution. Note that Liu and QZ estimate the

precision coefficient and the partial correlation of the original data which provide valid tests

for the hypotheses (2.1) under this case. Compared to the procedures designed for Gaussian

data, the proposed rank-based approach does not suffer power loss in testing for conditional

independence under the Gaussian distribution. The performances of CFC, GCNL and XTG

are comparable to RRNR under the AR covariance, but they suffer some power loss under the

block-diagonal covariance. Also, the difference between RRNR and GCNL and that between

RRNR and XTG in the ROC curve are not large. However, the latter two methods are much

more computationally intensive. Their computation times are listed in Table 1. Notice that
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Liu and QZ have higher ROC curves under the settings with transformations applied on odd

variables only than those with transformations on all variables. This indicates Liu and QZ

lose power in detecting nonlinear associations. ROCKET has the lowest ROC curve, but its

performance improves when the sample size is increased to 100, which implies that ROCKET

may need a much larger sample size to obtain an accurate estimate for ΩX.

The computation times of the aforementioned methods for the ROC curves are reported in

Table 1, which are assessed by a SuperMicro server with two 8-core Intel Haswell processors

(2.6 GHz). We see that the proposed method is much faster than the other four methods,

CFC, ROCKET, XTG and GCNL, for the inference of nonparanormal graphical models.

This is due to the easy implementation of the lasso estimation on the rank transformed data

compared to the Dantzig type estimators. This result verifies the computational efficiency

of the proposed method discussed in Section 3.3. ROCKET is faster than XTG and GCNL,

since it uses the restricted lasso program to estimate the NPN precision matrix. GCNL under

p “ 400 is not computed as it requires calculating a matrix with dimensions at the order

p2 ˆ p2, which demands a large memory. Also note that QZ has a longer computation time

than Liu because QZ uses the scaled lasso program, which is slower than the classical lasso

program.

[Table 1 about here.]

To evaluate the FDR control of the proposed multiple testing procedure, Table 2 reports

the empirical FDR and average power (TPR) of RRNR, QZ, Liu and CFC for the hypotheses

(2.1) under the nominal FDR level 0.05. ROCKET, GCNL and XTG are not considered here

as they do not offer a multiple testing procedure. From Table 2, we see that the proposed

procedure RRNR can control the FDR around the nominal level with high power under all

the cases, although it is slightly liberal under the AR covariance structure. The power of

RRNR increases as the increase of n, and it almost reaches 1 under the AR covariance and
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n “ 100. Similar to the ROC curve, the sizes and powers of RRNR are quite consistent

across different transformations under each combination of covariance structure, sample size

and dimension. This is due to the ranks of the data remain unchanged under monotone

transformations. CFC is also able to control the FDR at 5%. Although the power of CFC is

slightly inferior to that of RRNR under the AR covariance, their overall performances are

comparable under this setting. However, RRNR has a much higher power than CFC under

the block-diagonal covariance. Liu and QZ can control the FDR with a high power for the

identity transformation. However, both methods fail for the non-identity transformations, as

they are not designed for estimating nonparanormal partial correlations. Meanwhile, for the

identity transformation, the power of RRNR is comparable to those of Liu and QZ under

the block-diagonal covariance and is slightly lower than those of Liu and QZ under the AR

covariance. This manifests that the proposed method does not suffer power loss if the original

data are Gaussian distributed.

[Table 2 about here.]

6. Real data analysis

In this section, we demonstrate the utility of the proposed procedure on an FDG-PET brain

image data set (Huang et al., 2010), which was initially obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). The data contain the readings of 42 brain anatomical

volumes of interest (AVOI) from 49 Alzheimer’s disease patients (AD) and 67 normal control

subjects (NC). These 42 selected AVOIs are distributed in 4 brain regions that are identified

as the most affected ones by Alzheimer’s disease: prefrontal, parietal, occipital and temporal

lobes. The Shapiro-Wilk normality test is applied on each of the 42 variables for the AD

and NC groups, and the p value histograms of the two groups are reported in Web Figure

4 in the Supporting Information. From the histograms, we see that there are many small
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p values for both groups, indicating non-normal distributions for the readings from some

brain AVOIs. As the data may not follow the Guassian distribution, we apply the proposed

RRNR procedure to recover the nonzero NPN partial correlations ρX,j1j2 , which estimates

the graph of conditional dependence among the 42 brain AVOIs. As a comparison, we also

apply the CFC method for testing ρX,j1j2 being zero and the QZ method for testing the

partial correlation ρZ,j1j2 of the original data being zero. We control the FDRs of all three

methods at 0.05.

Figure 2 reports the estimated graphs of conditional dependence by the RRNR, CFC and

QZ procedures. The nodes in the graphs represent the 42 AVOIs, colored by the four brain

regions they belong to. This figure appears in color in the electronic version of this article,

and any mention of color refers to that version. The pairs of AVOIs with significant nonzero

partial correlations (ρX,j1j2 for RRNR and CFC, and ρZ,j1j2 for QZ) are connected by lines,

which are called edges of the graph. The first and second rows in Figure 2 present the results

for the AD and NC groups, respectively. The results of RRNR, CFC and QZ are reported

in the first, second and third columns of Figure 2, respectively. For the graphs of RRNR, all

edges are colored in red. For the graphs of CFC and QZ, the common connections shared

by RRNR are colored in grey, while their distinct connections are colored in blue. Those

blue edges connect the pairs identified as conditionally dependent by either the CFC or QZ

method but not by the proposed method.

From Figure 2, we observe that RRNR discovers 213 edges for the AD group, much more

than the 35 and 86 edges made by CFC and QZ, respectively. There is only one edge,

connecting two AVOIs within the temporal lobe, discovered by CFC but not by RRNR, while

there are 179 edges discovered by RRNR but not by CFC. Comparing RRNR with QZ, there

is one edge discovered by QZ but not by RRNR, while there are 128 edges only discovered

by RRNR. For the NC group, RRNR discovers 190 edges, while CFC and QZ discover 50
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and 84 edges, respectively. Comparing RRNR with CFC, there are 7 edges only found by

CFC and 147 edges only discovered by RRNR. Comparing RRNR with QZ, there are 4 edges

exclusively detected by QZ and 110 edges only revealed by RRNR. Those findings coincide

with the results from the simulation study, which imply the proposed method could be

more powerful than the existing methods in recovering the conditional dependence structure

among variables.

[Figure 2 about here.]

7. Discussion

This paper considers testing for partial correlations under the nonparanormal model. The

NPN partial correlation can be viewed as a rank-based measure for conditional dependence,

which extends the classical partial correlation for linear dependence to nonlinear dependence.

Compared to the existing methods on estimating the NPN graphical model, the proposed

RRNR procedure is easy to implement and can be efficiently computed for data sets with a

large number of variables. Since studying the interactions among variables and exploring

their relationships is one of the critical questions in biomedical research, the proposed

method has a wide range of applications. Besides the brain connectivity study introduced

in the real data analysis, it can also be applied to study gene regulatory networks and

microbiome networks by recovering the conditional dependence structure among variables.

Another potential application is to infer the conditional association among multi-omics data,

for example, the impact of plant gene expression levels on plant phenotypes conditional on

soil microbiomes.

Estimating partial correlation is advantageous over precision coefficient, as not only does

zero partial correlation imply conditional independence, but its value also provides the

strength of conditional dependence. Besides the hypotheses (2.1) for detecting conditional
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dependence among variables, we may also be interested in the hypotheses

H
pcq
0,j1j2

: |ρX,j1j2 | ď c vs. H
pcq
a,j1j2

: |ρX,j1j2 | ą c (7.10)

to recover the pairs with absolute NPN partial correlation greater than a pre-specified

constant c P p0, 1q. Similar to the rejection set T0psq in (3.8) for the hypotheses (2.1), we set

Tcpsq “  pj1, j2q : |pρX,j1j2 | ą c` sp1´ qρ2X,j1j2qtlogppq{nu1{2(, (7.11)

and reject H
pcq
0,j1j2

in (7.10) if pj1, j2q P Tcpsc̊ q where

s˚c “ inf

"
s P p0, 2s :

2t1´ Φps?log pqupp2 ´ pq
maxt1, |Tcpsq|u ď α

*
. (7.12)

If sc̊ does not exist, set sc̊ “ 2.

In real applications, there may exist covariates that affect the response variables. For

example, the patient’s age, pre-existing conditions and risk factors may impact the brain

image readings. Let Wi “ pWi1, . . . ,WimqT be the m dimensional covariates of the ith

observation, where m could be much larger than n. Consider the linear model

Zij “ φj,0 `
mÿ

k“1
Wikφj,k ` Uij (7.13)

for each response variable, where EpUijq “ 0 and EpUijWikq “ 0 for all j “ 1, . . . , p and k “
1, . . . ,m. Let Ui “ pUi1, . . . , UipqT be the regression errors of the ith observation after adjust-

ing the covariates effects. We assume a nonparanormal model on Ui such that Xi “ HpUiq “
ph1pUi1q, . . . , hppUipqqT follows a p-dimensional multivariate normal distribution with mean

0 and covariance ΣX with diagonal elements being one, where Hp¨q “ ph1p¨q, . . . , hpp¨qqT,

and each univariate transformation function hjp¨q is strictly monotone. Our focus is still

on the NPN partial correlation matrix ΨX “ pρX,j1j2q of the normal transformed data Xi.

Here, ρX,j1j2 “ 0 implies that Zij1 and Zij2 are conditionally independent after adjusting the

covariates Wi. Regularized estimation can be applied for the regression (7.13), and let tpUiju
be the residuals. The proposed RRNR procedure can be applied on the ranks of tpUiju for
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testing the conditional dependence among the variables of Ui. We will investigate this topic

in a future work.
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Figure 1. ROC curves (p “ 100) of the proposed RRNR, CFC (He et al., 2017), GCNL
(Gu et al., 2015), ROCKET (Barber and Kolar, 2018), XTG (Xu et al., 2016), Liu (Liu,
2013) and QZ (Qiu and Zhou, 2020) procedures for testing the hypotheses (2.1) of NPN
partial correlations under five transformations: identity, cubic root on all variables (CR-All),
cubic root on odd variables (CR-Odd), log on all variables (Log-All) and log on odd variables
(Log-Odd). The nodewise regression approach applied on the true transformations, denoted
by ‘True’, is included as the oracle benchmark. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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Figure 2. Graphs of the brain connectivity of the AD group (top three panels) and the NC
group (bottom three panels). The three columns show the identified nonzero NPN partial
correlation ρX,j1j2 by the proposed RRNR procedure (left) and the CFC method (center),
and the identified nonzero partial correlation ρZ,j1j2 of the original data by the QZ method
(right), respectively. Each node represents an AVOI, which is colored by the brain region it
belongs to. Red edges indicate the discovered connections by the RRNR procedure. For the
graphs of CFC and QZ, the common connections shared by RRNR are marked in grey, and
their distinct connections are marked in blue. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.
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Table 1
Computation times (in seconds per repetition) of the proposed RRNR, CFC (He et al., 2017), GCNL (Gu et al.,

2015), ROCKET (Barber and Kolar, 2018), XTG (Xu et al., 2016), Liu (Liu, 2013) and QZ (Qiu and Zhou, 2020)
procedures for testing the hypotheses (2.1) under the AR covariance and the log transformation on all variables

(Log-All).

n p RRNR CFC GCNL ROCKET XTG Liu QZ
60 100 0.37 2.23 1504.55 25.08 53.77 0.32 4.79
60 400 5.90 109.24 NA 2542.62 4146.73 4.02 88.83
100 100 0.39 2.71 1608.09 45.18 138.28 0.30 9.02
100 400 6.24 116.35 NA 4617.30 7168.55 4.46 142.82
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Table 2
Empirical FDRs and powers of the proposed RRNR, QZ (Qiu and Zhou, 2020), Liu (Liu, 2013) and CFC (He et al.,
2017) procedures for testing the hypotheses (2.1) of nonparanormal partial correlations at 5% nominal FDR level.

AR Covariance

n p Transformation
FDR Power

RRNR QZ Liu CFC RRNR QZ Liu CFC

60 100

Identity 0.075 0.103 0.085 0.043 0.681 0.776 0.753 0.598
CR–All 0.075 0.376 0.585 0.041 0.680 0.086 0.317 0.600

CR–Odd 0.074 0.390 0.288 0.044 0.675 0.042 0.358 0.595
Log–All 0.075 0.287 0.476 0.041 0.678 0.135 0.416 0.597

Log–Odd 0.077 0.337 0.270 0.042 0.683 0.065 0.380 0.602

60 400

Identity 0.051 0.067 0.052 0.045 0.454 0.587 0.545 0.464
CR–All 0.051 0.630 0.832 0.046 0.456 0.049 0.282 0.461

CR–Odd 0.050 0.826 0.558 0.042 0.455 0.009 0.197 0.464
Log–All 0.051 0.534 0.734 0.043 0.456 0.092 0.355 0.465

Log–Odd 0.050 0.802 0.498 0.043 0.455 0.009 0.189 0.462

100 100

Identity 0.091 0.087 0.077 0.037 0.970 0.980 0.978 0.908
CR–All 0.092 0.174 0.465 0.037 0.970 0.089 0.558 0.908

CR–Odd 0.094 0.142 0.244 0.036 0.969 0.105 0.806 0.908
Log–All 0.091 0.141 0.391 0.037 0.969 0.163 0.683 0.907

Log–Odd 0.092 0.131 0.239 0.037 0.970 0.159 0.820 0.909

100 400

Identity 0.071 0.089 0.078 0.033 0.929 0.954 0.949 0.856
CR–All 0.072 0.368 0.724 0.034 0.929 0.067 0.497 0.858

CR–Odd 0.072 0.411 0.361 0.034 0.929 0.038 0.682 0.857
Log–All 0.072 0.306 0.629 0.033 0.929 0.122 0.619 0.857

Log–Odd 0.071 0.370 0.334 0.033 0.929 0.057 0.698 0.858

BD Covariance

n p Transformation
FDR Power

RRNR QZ Liu CFC RRNR QZ Liu CFC

60 100

Identity 0.036 0.044 0.035 0.029 0.784 0.811 0.794 0.471
CR–All 0.038 0.107 0.369 0.030 0.785 0.238 0.508 0.476

CR–Odd 0.036 0.058 0.140 0.030 0.784 0.275 0.590 0.481
Log–All 0.037 0.083 0.275 0.029 0.784 0.305 0.566 0.464

Log–Odd 0.037 0.045 0.112 0.030 0.784 0.289 0.602 0.464

60 400

Identity 0.029 0.036 0.027 0.027 0.727 0.774 0.761 0.420
CR–All 0.028 0.233 0.641 0.027 0.726 0.197 0.517 0.403

CR–Odd 0.029 0.115 0.274 0.026 0.726 0.186 0.577 0.411
Log–All 0.029 0.178 0.521 0.027 0.726 0.257 0.581 0.419

Log–Odd 0.029 0.086 0.214 0.027 0.727 0.200 0.592 0.411

100 100

Identity 0.041 0.045 0.041 0.035 0.904 0.892 0.886 0.636
CR–All 0.041 0.052 0.331 0.034 0.906 0.181 0.597 0.659

CR–Odd 0.040 0.032 0.130 0.034 0.906 0.253 0.695 0.638
Log–All 0.042 0.050 0.264 0.035 0.905 0.242 0.642 0.642

Log–Odd 0.041 0.029 0.113 0.034 0.906 0.292 0.701 0.639

100 400

Identity 0.037 0.042 0.036 0.031 0.893 0.909 0.901 0.610
CR–All 0.037 0.107 0.581 0.030 0.893 0.197 0.614 0.596

CR–Odd 0.037 0.073 0.247 0.030 0.893 0.240 0.713 0.605
Log–All 0.037 0.106 0.493 0.031 0.893 0.257 0.669 0.603

Log–Odd 0.038 0.072 0.211 0.030 0.893 0.278 0.719 0.607


